
 

THE EDGE COMPUTING ALGORITHM AND NETWORK PERFORMANCE 

ANALYSIS 
 

1. Introduction 
 

A monitoring scheme testbed is developed to monitor a model of a power network 

integrated with a wind enregy DER simulated on the RTDS. Data from the model is 

acquired by an EC gateway model over a LAN connection. The gateway model consists 

of RTAC SEL-3555 and two IEC 61850 communication drivers in Elipse Power 

application. The RTAC SEL-3555 forwards data over a local area connection to the first 

driver in Elipse Power which is an IEC 61850-8-1 MMS client. Thereafter, data is 

forwarded to the second driver which is an IEC 61850-8-2 XMPP server that enables 

XMPP-based communication over WANs. 

 

The workstation ‘PC-3’ which represents a control center in a distant location, hosts a 

remote IEC 61850-8-2 XMPP client driver that polls data from the IEC 61850-8-2 XMPP 

server driver on ‘PC-1’. The XMPP-based communications are managed by the 

Openfire XMPP server application implemented on ‘PC-2’. The chapter presents an 

evaluation of the EC impact on communications QoS for monitoring remote DER sites 

in a smart grid. An algorithm for data fusion is implemented in RTAC SEL-3555 to 

reduce data volume before transmission over an Internet-based WAN. Wireshark 

software is used to capture and analyze the network traffic to measure the QoS metrics 

of interest, which are latency and bandwidth usage. Additionally, data packets in the 

network traffic are analyzed to examine IEC 61850-8-2 XMPP standard data exchange 

and cybersecurity mechanisms. 

 

 

2. Setting up Wireshark 
 

Wireshark is a prominent open-source software for capturing and analysing data traffic 

in communication networks. The host machine of Wireshark was plugged into the main 

switch of the lab-scale monitoring testbed as described in figure 1 below. It was 

operated to capture IEC 61850-8-2 XMPP communications traffic over an Internet-

based WAN. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Wireshark capturing point in the lab-scale testbed. 

 

The utilized network switch is configured to reroute traffic from all ports to a monitoring 

port, where Wireshark machine is plugged. This was achieved by activating the ‘Mirror’ 

port feature. The ‘Mirror’ port allows Wireshark to monitor all network traffic between 

XMPP clients and Openfire server. This point is the best option to get an accurate and 

synchronized capture of network traffic. 

 

The following section presents a visual break down of the XMPP data exchange and 

cybersecurity aspects using the captured packets. 

 

3. Analysis of IEC 61850-8-2 XMPP standard data exchange and cybersecurity 
mechanisms 

 

The section describes a visual analysis of the data exchange and cybersecurity 

mechanisms of IEC 61850-8-2 XMPP standard. The data exchange profile specifies 

that IEC 61850 devices are to be hosted by XMPP clients. This is implemented in Elipse 

Power IEC 61850 drivers as they host the IEC 61850-8-1 MMS client/server entities, 

and uses XMPP as the transport layer protocol. All XMPP clients are linked across a 

WAN to an XMPP server and are given unique JID addresses (Nadeem et al., 2019). 

The Client/server architecture is used in XMPP communications whereby TCP/IP 

connections to the XMPP server are established by XMPP clients. The data exchange 

stream captured by Wireshark, between IEC 61850-8-2 XMPP client in ‘PC-1’ with IP 

address “155.238.180.105” and Openfire XMPP server hosted in ‘PC-2’ with IP address 

“155.238.180.73”, are illustrated in figure 2 below. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 2: XMPP exchanged packets between client/server. 

 

The XMPP client initiates communications by sending a connection request, and the 

server responds to establish a TCP/IP connection as seen in the first three packets 

highlighted with number one. A magnified view of the exchanged data packets, is 

provided in figure 3 below. Once a TCP/IP link is established, an XML stream is enabled 

between client/server as indicated in the second packet group. Thereafter, a TLS 

connection is negotiated between client/server as highlighted in the third packet group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: A magnified view of the XMPP exchanged packets. 



The XMPP-based communications take place in secured and an encrypted fashion. 

The TLS and SASL security protocols are implemented at the transport layer in E2M 

XMPP communication. The TLS protocol provides channel encryption to secure data 

from tampering and eavesdropping (Saint-Andre, 2011). As noted in TLS negotiation 

packets in figure 3 above, the client receives the ‘Features’ packet from the server and 

then initiates a ‘STARTTLS’ command. 

 

A handshake is intitatied by the client ‘Client Hello’ and the server responds by sending 

a security certificate and a server key “authentication identity”. The client negotiates by 

requesting a ‘Change Cipher Spec’ to the server which is a request to change the 

encryption cipher specifications to be applied. The server acknowledges this request 

of change, and a secured and encrypted transport channel will be established, which 

will lead to  realizing integrity and confidentiality for E2M XMPP communications. 

Consequently, upon completion of a successful TLS negotiation, the E2E SecProtocol 

authentication messages are interchanged in the form of encrypted handshakes to 

verify the IEC 61850 MMS client/server end peers as authenticated users. 

 

The ‘Features’ packet is the first to be sent by an XMPP server to any XMPP client after 

establishing the XML stream. It carries all the server’s information in the XMPP payload. 

As depicted in figure 4 below, the XMPP server declares all its features to the client 

including server information, cybersecurity mechanisms, encryption cipher, and 

compression method. After receiving this packet, the client requests to start TLS 

negotiations. 

 

 

 

Figure 4: XMPP server ‘Features’ packet contents. 



As seen in figure 5 below, the contents of an ‘Application Data’ packet are encrypted 

and any attempt from possible attackers to eavesdrop on XMPP communications using 

packet-capturing tools such as Wireshark, would be useless to get any information. 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 5: The ‘Application Data’ packet encrypted content. 

 

The following section presents the developed algorithm to reduce the data volume 

transmitted on a network. 

 

4. Edge computing algorithm for data reduction 
 

A data fusion algorithm is implemented in RTAC SEL-3555 using IEC 61131-3 ST 

language. The main purpose of the algorithm is to reduce the number of transmitted 

data tags over a network. In the research testbed, a total of twelve data tags are used 

for monitoring the power network model in RTDS listed in table 1 below. 

Table 1: Signal names of the data tags under the monitoring scheme 

Parameter Value 

Generator’s busbar phase A voltage   STLWT1a 

Generator’s busbar phase B voltage   STLWT1b 

Generator’s busbar phase C voltage  STLWT1c 

Wind Gusts value   GUST 

Computed Air Density airdensity 

Wind speed in Km/hr windkph 

Hub Speed in rad/sec HUBSPD 

Turbine Power in Mega Watts pwrturb 

Blades Pitch degree pitchdeg 



Rotor Speed in pu STLWT1SPD 

Stator active power (P) in Mega Watts STLWT1P 

Stator reactive power (Q) in Mega VAR STLWT1Q 

 

The first three points are root mean square (rms) values of single-phase voltages of 

the generator busbar ‘STWLT1a, STWLT1b, STWLT1c’. The equivalent three-phase 

value can be transmitted instead of three individual values, it is calculated by using 

equation 1 below, where 𝑽𝑨 represents the single-phase voltage. 

 

𝑽𝟑𝒑𝒉 =  √𝟑 ∗ 𝑽𝑨     (1) 

 

The three tags, wind gust ‘GUST’, wind speed ‘windkph’, and pitch degree ‘pitchdeg’, 

are reduced to a single point by using the gust value as an alarm for wind overspeed 

which can damage the turbine. In the occurrence of wind gust, the gateway must 

transmit the pitch degree value to inform the control centre that, the pitch angle control 

is operative. In the event that, pitch angle control is not operative, a manual intervention 

would be needed to prevent turbine damage during high wind speeds. However, the 

gateway keeps monitoring the wind speed during normal and low wind speeds. This 

logic can be expressed in the following steps: 

▪ If ‘GUST’ > 1 

▪ Transmit pitch degree ‘pitchdeg’ 

▪ Else 

▪ Transmit wind speed ‘windkph’ 

 

A similar concept is applied to combine the power output of the induction machine 

‘STLWT1P’ and the power output of the wind turbine ‘pwturb’. For the duration of the 

wind turbine startup and before reaching rated speed and coupling to the grid, the 

gateway must transmit the power output of the turbine. During this period, the power 

output of the generator would be very small or even a negative value. Thereafter, when 

rated speed is achieved and the generator is coupled to the grid, priority shifts to the 

generator power output to be monitored. This logic can be articulated in the following 

steps: 

▪ If generator output power ‘STLWT1P’ < 0 

▪ Transmit turbine output power ‘pwturb’ 

▪ Else 

▪ Transmit generator’s output power ‘STLWT1P’ 

 



The final part of the algorithm combines generator rotor speed ‘STLWT1SPD’ and 

turbine hub speed ‘HUBSPD’, which are interrelated via the gear ratio. Both values are 

calculated by the turbine model in RTDS, using different units. The rotor speed is 

provided in pu and the hub speed in radiance per second (rad/s). The rotor speed can 

be converted to turbine hub speed using the gear ratio value. Henceforth, the EC 

gateway can transmit only the difference between the converted and the monitored hub 

speed ‘HUBSPD’ instead of transmitting two data tags. The difference should be very 

small “optimally zero” and any significant change in the value would indicate existence 

of mechanical faults in the coupling parts between turbine and generator. 

 

According to the technical specifications of the turbine model “Vestas V82” listed in 

table A.1 in the appendix, the gear ratio is “84.5”, and the rated speed of the generator 

machine is “1200” revolution per minute (rpm) which is the base value for the rotor 

speed in pu. In order to convert the rotor speed to hub speed, the following steps are 

performed using equations 2 up to 5: 

 

▪ Convert pu to rpm 

1 𝑝𝑢 =  1200 𝑟𝑝𝑚     (2) 

𝑆𝑇𝐿𝑊𝑇1𝑆𝑃𝐷 ∗  1200 =  𝑟𝑜𝑡𝑜𝑟 𝑠𝑝𝑒𝑒𝑑 𝑖𝑛 𝑟𝑝𝑚      (3) 

▪ Apply the gear ratio to convert to the hub speed 

𝑟𝑜𝑡𝑜𝑟 𝑠𝑝𝑒𝑒𝑑 𝑖𝑛 𝑟𝑝𝑚 ∗  1/84.5 =  ℎ𝑢𝑏 𝑠𝑝𝑒𝑒𝑑 𝑖𝑛 𝑟𝑝𝑚   (4) 

▪ Convert hub speed to rad/sec 

ℎ𝑢𝑏 𝑠𝑝𝑒𝑒𝑑 𝑖𝑛 𝑟𝑎𝑑/𝑠 =  ℎ𝑢𝑏 𝑠𝑝𝑒𝑒𝑑 𝑖𝑛 𝑟𝑝𝑚 ∗  (2𝜋/60)  (5) 

The converted value of the hub speed in equation 5 above, is subtracted from the 

monitored hub speed value which is provided via GOOSE from the turbine model in 

RTDS, and the difference is transmitted by the gateway. The algorithm is developed 

using IEC 61131-3 ST language in RTAC SEL-3555 as shown in figure 6 below. 

 

 

 

 

 

 

 

 



Figure 6: Data fusion algorithm in RTAC SEL-3555. 

 

Simulations were run for the two test cases, with and without executing the data fusion 

algorithm. When the algorithm is not executed, all twelve data tags are transmitted 

without any reduction as displayed in figure 6 below. Data was tracked across the 

testbed in order to verify the algorithm effect. GOOSE messages which are published 

by the DER model on RTDS, were monitored using GOOSE Inspector software 

indicated by number one in the figure. Then, the GOOSE is mapped to the server model 

of RTAC SEL-3555, and the online monitoring mode in RTAC SEL-3555 was used to 

observe data values in real-time, as highlighted by number two in the figure. Finally, 

the online view of the IEC 61850-8-1 MMS client driver in Elipse Power was captured 

as indicated by number three in the figure. 



 

Figure 7: Data across the gateway model without execution of the EC algorithm.



After the data fusion algorithm was executed, the data tags were effectively reduced 

from twelve to six tags. As illustrated in figure 8 below, twelve data tags are received 

via GOOSE, assigned to global variables, then the algorithm operates on these 

variables. Thereafter, the resulting data tags are assigned to DOs of the RTAC SEL-

3555’s server model. Six tags are forwarded to the IEC 61850-8-1 MMS client driver in 

Elipse Power. 

 

The following section presents an analysis of the communication performance using 

Wireshark packet-capturing software. 

 



 

 

 

Figure 8: Data across the gateway model with the execution of the EC algorithm.



5. Analysis of the communication Quality of Service using Wireshark 
 

The QoS metrics such as bandwidth and latency are performance indicators of 

communication networks. Bandwidth is the transmission capacity of a network that 

determines the data volume which can be transferred across a network in a specific 

period of time. Bandwidth is measured in bits/s, and is the main characteristic that 

decides the quality of a communication network. Insufficient bandwidth affects the 

overall network performance and causes congestions that result in excessive latencies, 

packet losses, and poor connectivity. Therefore, minimizing the bandwidth usage in a 

network is critical to ensure the best possible performance. 

 

A major purpose of implementing the EC concept, is to reduce data traffic in a network 

by processing data near the source before transmission, consecuently, reducing the 

bandwidth usage will improve the overall network performance. In the testbed, 

Wireshark was employed to capture data traffic in the network and to provide 

measurements for communications QoS metrics “bandwidth usage and latency”. These 

measurements are used to evaluate the impact of implementing the EC algorithm on 

the performance of a communication network. The methodology of evaluation is 

established on comparing QoS measurements in two test cases, with and without 

executing the EC algorithm. The following sections present methodologies and results 

of Wireshark analysis tools. 

 

5.1 Description of Wireshark ‘Capture Files’ 
 

The traffic captures for both test cases were taken for equal period of time twenty five 

minutes, to provide an accurate comparison of the network performance. A display filter 

was applied to extract the traffic of interest between the Openfire XMPP server and 

Elipse Power drivers “XMPP clients” in the testbed. The applied filter is written in the 

format “ip.addr == 155.238.180.73 && ip.addr == 155.238.180.105 or ip.addr == 

155.238.180.73 && ip.addr == 155.238.180.87”. As a result, the displayed packets are 

only the conversations between the Openfire XMPP server hosted on ‘PC-2’ with IP 

address “155.238.180.73”, and the IEC 61850-8-2 XMPP clients hosted on ‘PC-1’ and 

‘PC-3’ with IP addresses “155.238.180.105” and “155.238.180.87” respectively. 

Wireshark produces statistics for both captured and filtered data. The properties of the 

‘Capture Files’ for the test cases are displayed in figures 9 and 10 below. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 9: The capture file properties without execution of the EC algorithm. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 10: The capture file properties with the execution of the EC algorithm. 



The displayed properties include the capture file name, length, date and time of the 

capture, and statistics of captured and displayed traffic “filtered XMPP data traffic”. As 

noticed from the ‘Statistics’ part in the figures above, the average bandwidth usage 

reflects the impact of the EC algorithm. In the capture file ‘Switch Capture without EC’ 

in figure 9 above, the bandwidth usage is ‘96 Kbits/s’ for the filtered XMPP traffic. While 

in the capture file ‘Switch Capture with EC’ in figure 10 above, the bandwidth usage 

reads ‘95 Kbits/s’. This indicates a bandwidth usage reduction by one Kbits/s.  

 

Wireshark provides comprehensive tools to evaluate the bandwidth usage and latency 

from the captured traffic. The I/O Graphs tool gives accurate measurments of QoS 

metrics. The following section provides an analysis of communication QoS for both test 

cases in the testbed using Wireshark I/O Graphs. 

 

5.2 Communication Quality of Service analysis using Wireshark I/O Graphs 
 

The bandwidth usage in each test case of the implementation, are provided in figures 

11 and 12 below. 

 



 
Figure 11: Bandwidth usage of XMPP communications with execution of the EC algorithm. 

 



 

Figure 12: Bandwidth usage of XMPP communications without execution of the EC algorithm.



The latency is calculated from the time delay between consecutive packets in a TCP 

stream, which can be displayed using the filter expression “tcp.time-delta”. The I/O 

Graphs tool computes and plots the average latency values for each case as shown in 

figures 13 and 14 below.  

 

A key feature of I/O Graphs is that, it allows for exporting the plots to a Comma 

Separated Values (CSV) format which can be further analysed using Microsoft Excel. 

Consequently, Microsoft Excel was used to calculate the average “arithmetic mean” of 

data values for bandwidth usage, and to determine the maximum latency recorded in 

each case. The bandwidth and latency results for each case are listed in table 2 below. 

 

Table 2: The QoS results for the two test cases. 

 

QoS parameter With EC algorithm Without EC 
algorithm 

Impact 

 
Average Bandwidth 
(bits/s) 

 
95742.26  

 
96132.77  

 
390.51 

 
Maximum Delay (s) 

 
8.09644 

 
8.53397 

 
0.43753 

 

 

From the results in table 2 above, the impact of the EC algorithm on the communication 

QoS is detected. The following section presents points of discussion on the testbed 

simulations, the recorded results, and the impact of EC on communication QoS. 



 

Figure 13: Average latencies in the TCP stream of the network traffic without the EC algorithm. 



 

Figure 14: Average latencies in the TCP stream of the network traffic with the EC algorithm.



6. Discussion 
 

Substantiated by the results of QoS metrics from Wireshark, the impact of EC was 

observed to be a reduction of ‘340.9 bits/s’ for bandwidth usage and ‘0.437 seconds’ 

for latency. It is noted that, the impact is a reasonably small amount which is due to 

several factors. The exchanged data in the testbed is objectively a minor amount 

compared to real-life applications, because it consists of only twelve data tags 

transmitted via GOOSE and enveloped in IEC 61850 MMS and XMPP headers 

according to IEC 61850-8-2. This can be recognized from the bandwidth usage without 

execution of the EC algorithm which is slightly over ‘96’ Kbits/s. 

 

As previously explained in section 5.2, the latency is calculated based-on the time 

delay between consecutive packets in a single TCP stream, between each client and 

the XMPP server. Wireshark provides this important measurement because it 

represents the RTT for a data packet in a TCP conversation between client/server. 

This value is not an E2E latency “between PC-1 and PC-3”, it is rather an E2M latency 

between ‘PC-2’ and either ‘PC-1’ or ‘PC-3’. However, it provides a measure for the 

latency in the network. 

 

7. Conclusions 
 

The chapter presented an analysis of IEC 61850-8-2 XMPP communications in the 

developed testbed using Wireshark packet-capturing software. Initially, the data 

exchange and cybersecurity mechanisms of the XMPP standard were examined. 

Thereafter, a description was provided for the data fusion algorithm, which was 

developed to reduce the amount of transmitted data over the network. The simulation 

captions of the EC gateway model were illustrated to verify the impact of the algorithm 

to reduce the transmitted data tags from twelve to six. Furthermore, a Wireshark-based 

evaluation of the EC algorithm’s impact on the communication QoS was outlined. The 

methodology of the evaluation consisted of capturing data traffic for an equal period of 

time with and without execution of the EC algorithm. 

 

Wireshark I/O Graphs and Microsoft Excel were applied to analyze bandwidth usage 

and latency for both test cases and the results were provided. The impact of executing 

the EC algorithm was observed. From the analysis, it was noticed that, the impact was 

comparatively small due to the limited capacity of the lab-scale testbed. However, the 

EC impact can be scaled to real-life applications where large data are being exchanged 

and transmitted over the network. 

 


